

### **Course Syllabus**

| 1   | Course title                             | Software Packages in Chemistry                                             |  |  |  |  |
|-----|------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| 2   | Course number                            | 0303361                                                                    |  |  |  |  |
| 3   | Credit hours                             | 2 Hours                                                                    |  |  |  |  |
| 3   | <b>Contact hours (theory, practical)</b> | (1,3)                                                                      |  |  |  |  |
| 4   | Prerequisites / corequisites             | 0303341                                                                    |  |  |  |  |
| 5   | Program title                            | Bachelor degree in chemistry                                               |  |  |  |  |
| 6   | Program code                             | 0303                                                                       |  |  |  |  |
| 7   | Awarding institution                     | The University of Jordan                                                   |  |  |  |  |
| 8   | School                                   | Science                                                                    |  |  |  |  |
| 9   | Department                               | Chemistry                                                                  |  |  |  |  |
| 10  | Course level                             | 3rd year                                                                   |  |  |  |  |
| 11  | Year of study and semester (s)           | Fall, Spring and Summer                                                    |  |  |  |  |
| 12  | Other department(s) involved in          | N/A                                                                        |  |  |  |  |
| 14  | teaching the course                      |                                                                            |  |  |  |  |
| 13  | Main teaching language                   | English                                                                    |  |  |  |  |
| 14  | Delivery method                          | $\boxtimes$ Face to face learning $\square$ Blended $\square$ Fully online |  |  |  |  |
| 1 5 | Online rlatformed(a)                     | $\Box$ Moodle $\boxtimes$ Microsoft Teams $\Box$ Skype $\Box$ Zoom         |  |  |  |  |
| 15  | Online platforms(s)                      | □Others                                                                    |  |  |  |  |
| 16  | Issuing/Revision Date                    | July 1-2024                                                                |  |  |  |  |

### **17 Course Coordinator:**

| Name: Wissam Helal                          | Contact hours: S, T, T: 10:30 – 12:30 |
|---------------------------------------------|---------------------------------------|
| Office number: Chemistry extension building | Phone number: 22175                   |
| Email: wissam.helal@ju.edu.jo               |                                       |

### **18 Other instructors:**

N/A

### **19 Course Description:**

Software Packages in Chemistry course offers the opportunity for chemistry majors to perform experiments related to some of the main software used by the chemical scientific community. The experiments covers three main types of utilities: Spreadsheets, chemical drawing software, and computational chemistry software.



### 20 Course aims and outcomes:

## A- Aims:

- 1. Develop a firm and solid understanding of the fundamental principles of physical chemistry.
- 2. Explain the fundamental concepts and phenomena of physical chemistry, in particular, in electrochemistry and electrochemical equilibrium, chemical kinetics and reaction dynamics, reaction mechanisms, catalysis, and surface chemistry.
- 3. Acquire a quantitative understanding of physical chemistry, by both expressing ideas and concepts into mathematical relations, and by understanding physical concepts behind mathematical formulas. Furthermore, students will be able to derive important mathematical relations.
- 4. Promote problem-solving skills by applying different mathematical methods and techniques to the solution of relevant problems, and by encouraging students to work systematically through complex problems.
- 5. Appreciate the continuous interplay between experiment and theory in physical chemistry.
- 6. Allow students to develop an awareness of the connections between topics in physical chemistry, in order to explore physical chemistry as a "unified" field of study and research.
- 7. Integrate the fundamental subjects learned with practical and industrial applications.
- 8. Stimulate student's interest to the state of art techniques and developments in the field of physical chemistry, through chemical primary sources and literature.

# **B-** Course Learning Outcomes (CLOs): Upon successful completion of this course students will be able to:

- CLO-1. Acquire numerical skills for the analysis of chemical data.
- CLO-2. Apply problem solving skills to solve chemical problems using automated and numerical tools.
- CLO-3. Acquire working experience with different computational chemistry tools.

| 0303361 Software Packages in Chemistry |       |                       |      |              |      |      |      |      |  |  |  |
|----------------------------------------|-------|-----------------------|------|--------------|------|------|------|------|--|--|--|
|                                        |       | Student Outcomes (SO) |      |              |      |      |      |      |  |  |  |
|                                        |       | SO-1                  | SO-2 | SO-3         | SO-4 | SO-5 | SO-6 | SO-7 |  |  |  |
| Course                                 | CLO-1 | $\checkmark$          |      | $\checkmark$ |      |      |      |      |  |  |  |
| Learning                               | CLO-2 | $\checkmark$          |      | $\checkmark$ |      |      |      |      |  |  |  |
| Outcomes<br>(CLO)                      | CLO-3 | $\checkmark$          |      | $\checkmark$ |      |      |      |      |  |  |  |



# 21. Topic Outline and Schedule:

| Week | Lecture/Experi<br>ment | Горіс                                                                                                 | Teaching<br>Methods/platfor<br>m           | Evaluation<br>Methods            | References                                    |  |  |
|------|------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------|-----------------------------------------------|--|--|
| 2    | 1                      | <b>Experiment 1:</b> Excel:<br>Basic operations and<br>functions                                      | Practical in the<br>computer<br>laboratory | Reports + Mid and Final<br>exams | Software<br>Packages in Chem<br>Experiment 1  |  |  |
| 3    | 2                      | Experiment 2: Excel:<br>Graphs and plots                                                              | Practical the<br>computer<br>laboratory    | Reports + Mid and Final<br>exams | Software<br>Packages in Chem<br>Experiment 2  |  |  |
| 4    | 3                      | Experiment 3:<br>Mathematical Methods<br>in Excel                                                     | Practical in the<br>computer<br>laboratory | Reports + Mid and Final<br>exams | Software<br>Packages in Chem<br>Experiment 3  |  |  |
| 5    | 4                      | <b>Experiment 4:</b> Excel:<br>Curve fitting and linear<br>regression                                 | Practical in the<br>computer<br>laboratory | Reports + Mid and Final<br>exams | Software<br>Packages in Chem<br>Experiment 4  |  |  |
| 6    | 5                      | Experiment 5:<br>Chemsketch: Drawing<br>basic and complex<br>structural formulas                      | Practical in the<br>computer<br>laboratory | Reports + Mid and Final<br>exams | Software<br>Packages in Chem<br>Experiment 5  |  |  |
| 7    | 6                      | Experiment 6:<br>Chemsketch: Drawing<br>chemical reactions and<br>schemes                             | Practical in the<br>computer<br>laboratory | Reports + Mid and Final<br>exams | Software<br>Packages in Chem<br>Experiment 6  |  |  |
| 8    | 7                      | Experiment 7:<br>Gaussian: Basic<br>calculations                                                      | Practical in the<br>computer<br>laboratory | Reports + Final exam             | Software<br>Packages in Chem<br>Experiment 7  |  |  |
| 9    | 8                      | Experiment 8:<br>Gaussian: Molecular<br>orbitals, electron density<br>and electrostatic<br>potentials | Practical in the<br>computer<br>laboratory | Reports + Final exam             | Software<br>Packages in Chem<br>Experiment 8  |  |  |
| 10   | 9                      | Experiment 9:<br>Gaussian: Geometry<br>Optimization and<br>Vibrational Frequencies                    | Practical in the<br>computer<br>laboratory | Reports + Final exam             | Software<br>Packages in Chem<br>Experiment 9  |  |  |
| 11   | 10                     | Experiment 10:<br>Gaussian: Including<br>Solvent & Solvation                                          | Practical in the<br>computer<br>laboratory | Reports + Final exam             | Software<br>Packages in Chem<br>Experiment 10 |  |  |
| 12   | 11                     | <b>Experiment 11:</b><br>Locating & Optimizing<br>Transition States                                   | Practical in the<br>computer<br>laboratory | Reports + Final exam             | Software<br>Packages in Chem<br>Experiment 11 |  |  |
| 13   | 12                     | Experiment 12:<br>Reaction Coordinate<br>Scans & Potential<br>Energy Surfaces                         | Practical in the<br>computer<br>laboratory | Reports + Final exam             | Software<br>Packages in Chem<br>Experiment 12 |  |  |



### 22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

| Evaluation Activity Mark |    | Topic(s)         | CLO | Period (Week)    | Platform     |
|--------------------------|----|------------------|-----|------------------|--------------|
| Reports                  | 40 | All Experiments  |     | All weeks        | Written      |
| Mid exam                 | 20 | Experiments 1-6  |     | Week 8           | Written exam |
| Final exam               | 40 | Experiments 1-10 |     | Final exams week | Written exam |

### **23** Course Requirements

N/A

### 24 Course Policies:

| A- | - Attendance policies: |        |        |    |       |     |    |     |       |        |    |     |
|----|------------------------|--------|--------|----|-------|-----|----|-----|-------|--------|----|-----|
|    | Students               | should | attend | at | least | 85% | of | the | total | number | of | the |
|    | lectures.              |        |        |    |       |     |    |     |       |        |    |     |

- B- Absences from exams and submitting assignments on time: Students who miss an exam must submit and acceptable excuse and then a makeup exam will be appointed.
- C- Health and safety procedures: Followed according to university regulations.
- D- Honesty policy regarding cheating, plagiarism, misbehavior: Followed according to university regulations.

#### E- Grading policy:

- 1. Mid exam 20%
- 2. Reports 40%
- 3. Final exam: 40%
- The letter grade scale is adopted.
- F- Available university services that support achievement in the course: Central library, personal computer labs at different locations in the university, e-learning site, faculty member's website.



### **25 References:**

A- Required book(s), assigned readings and audio-visuals: Wissam Helal, Software Packages in Chemistry: A Manual of Selected Experiments Using Excel, Chemsketch & Gaussian, The University of Jordan 2023.

B- Recommended books, other materials, and media: Lecture notes and other documents and information relevant to the course are available at my e- leering site of The University of Jordan (<u>https://elearning.ju.edu.jo//</u>).

Furthermore, students are strongly recommended to frequently consult one or more of the following books (all available at the university library):

1. P. W. Atkins, and J. de Paula, Atkins' Physical Chemistry, 10th ed., OUP, 2014.

2. G. Barrow, Physical Chemistry, 6th ed., McGraw-Hill College, 1996.

3. T. Engel, and P. Reid, Physical Chemistry, 3rd ed., Pearson Education, Inc., 2013.

4. I. N Levine, Physical Chemistry, 6th ed., the McGraw-Hill Companies, 2009.

5. R. Silbey, R. Alberty, and M. Bawendi, Physical Chemistry, 4th ed., John Wiley, 2004.

### **26 Additional information:**

N/A

| Name of Course Coordinator: Dr Wissam Helal | Signature: Wissam Helal | Date: 1/7/2024 |
|---------------------------------------------|-------------------------|----------------|
| Head of Curriculum Committee/Department:    | Signature:              |                |
| Head of Department:                         | Signature:              |                |
| Head of Curriculum Committee/Faculty:       | Signature:              |                |
| Dean:                                       | Signature:              |                |